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Abstract—Recently, convolutional neural networks have
shown powerful capability in different fields of computer
vision, and have become the most effective means for dense
prediction problems such as semantic segmentation. How-
ever, methods based on fully convolution network(FCN) are
inherently limited to the size of the receptive field for each
pixel, which leads to the bad performance of predicting object
boundary. In this paper, we propose a novel deep neural
network module, namely group dilated convolution(GDC),
to effectively enlarge the receptive field, and a top-to-down
pathway network is exploited simultaneously. The idea is that
dilation convolution with different ratios can cover features
of different scales, which shows a significant Mean IOU
improvement in comparison with the baseline network.
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I. INTRODUCTION

Semantic segmentation is a fundamental research of
computer vision. The main challenge of this task is to
precisely recognize the irregular shape region for every
appointed object. This is a pixel-level recognition task
which is more difficult and meaningful than the object
detection task. Semantic segmentation is widely applied
on augmented reality, home-automation devices, and self-
driving vehicles. Therefore developing preeminent seg-
mentation algorithm is of great significance and strong
demand.

In recent years, convolutional neural network (CNN)
has achieved significant success on many computer vision
tasks, such as image classification [1],face recognition
[2], object detection [3], [4]. The neural network is able
to learn effective features from repeated convolution and
pooling operations based on the large-scale dataset. These
features convert the original image into a discriminative
subspace and show important property of simple trans-
formation invariance including scaling, translation, and
rotation. Owing to the powerful semantic information of
feature maps in CNN, it is also widely used in semantic
segmentation [5].

One factor that affects the performance of the semantic
segmentation task is the narrow effective receptive field.
Although the theoretical receptive filed in a common
neural network is larger than the whole input image, Luo
W et. al found that the effective receptive field only
occupies a small fraction of the theoretical receptive filed
[7], and a lot of researchers tend to learn more global
context information to enlarge receptive field [8], [9]. The

Figure 1. Illustration of the misclassification examples.Images in the
left column are the original images, the center column shows the ground
truth,and the right column shows the prediction result of the baseline
model.

features do not contain enough context information, the
final prediction results will be strongly interfered by the
noise especially when objects of different categories are
too close to each other. Fig. 1 shows the misclassification
examples. It is clear that pixels in the center of the
front window of the bus are misclassified. This is mainly
because that features corresponding to the center pixel
(the area illustrated by the red rectangle) do not show any
information about the bus. If the effective receptive field of
such features contains the whole bus, the prediction results
may be correct. The images in the second row show a
similar situation and people can recognize the thigh of the
person in the image, but from the view of computer vision,
the part is confused with the background. Therefore, to
enlarge the effective receptive field is an effective way to
improve the semantic segmentation performance.

Besides to add extra convolution layers to enlarge the
receptive field [10], some other methods are also proposed
to solve this problem. Liu et.al proposed to use global
average feature of a layer to augment the features at each
location [11], and Zhao et. al improved this idea and
proposed pyramid pooling module to cover global context
information by different-region-based context aggregation
[12]. Dilated convolution [13] is also widely used in
semantic segmentation to solve the problem. Chen et. al
used dilated convolution to convert original classification
network into a network with less stride operation [6],
[14]. Yu et. al used it to aggregate multi-scale context
information [8]. Wang et. al changed dilation rates of
convolution layer [15]. In this paper, we also explore the



Figure 2. Illustration of the process to convert residual block to group dilation convolution with four branches. (a) shows the original residual block
in the residual network [6] (b) is the group dilation convolution module which is convert from (a), and (c) shows the group dilation with similar
parameters of (b).

usage of dilation convolution to enlarge the receptive field.
The changes to dilation rate can effectively enlarge the
kernel size without any extra computation, it thus offers
an efficient mechanism to control the receptive field.

The semantic segmentation task requires to assign each
pixel of the image with a special category label, and
the final feature map requires to have the same size as
the origin input image, which conflicts with the common
design of neural networks. Low-level features of CNN
contain more detail information whereas high-level fea-
tures contain more semantic information, both of them
are significant for the semantic segmentation task [10].
FCN [5]up-sampled the last layer directly to the origin
image size and exploited the expanded feature map to
perform classification.However, the coarseness of the final
expanded feature map strongly limits the improvement of
the final result. Thus, several kinds of neural network
architectures have been proposed to solve this problem.
For example,FCN [5] combined coarse-to-fine prediction
probabilities from multiple layers by averaging segmenta-
tion probabilities. Hypercolumns [16] and HyperNet [17]
combined features from multiple layers before making
the prediction. Refinenet [10] used a cascade strategy to
combine multi-scale features. SegNet [18], Decovnet [19],
used the deconvolution operation to up-sample feature
maps step by step to recall more local information at
the cost of much extra computation and many parameters.
But the local information is lost in the forward pass, the
performance of recalling detailed information is not as
good as expected. DeepLab [6], [14] methods proposed
to use dilated convolution to reduce the times of down
sampling and showed the promising efficiency. But the
feature maps of such networks will be larger several
times than the origin which causes extremely memory
consuming, so that we can not directly put the networks
in GPU memory without any sub-sampling operation. The
authors made a trade-and-off between feature map size
and memories. They down-sampled the networks twice
in previous layers to fit the requirement of memory.
On this condition, the size of the final feature map is
small and but too coarse to predict object boundary and

requires extra pose processing, such as conditional random
field(CRF). Therefore,in this paper, we propose a top-to-
down pathway network to up-sample the DeepLab network
for refining the feature map. The final feature will contain
both detailed information to classify the object boundary
and multi-scale context information to predict label for
every pixel.

II. OUR APPROACH

A. Group Dilation Convolution (GDC)

In this section, we describe the formulation of our
proposed framework in detail. We start by discussing how
to enlarge the receptive field. As pointed out previously,
dilation convolution is our main tactics. We explore how
to use dilation convolution with different ratios to enlarge
the receptive field, and propose the small size structure in
Fig. 2, which is called group dilation convolution.

Our proposed module is shown in Fig. 2(b) and is
inspired by the atrous Spatial Pyramid Pooling (ASPP)
module of Deeplab-v2 [6]. It also applies the parallel di-
lated convolution with different ratios which are expected
to cover different regions of multiple scales and enlarge
the receptive field. We may apply the idea to the origin
convolutions(Fig. 2(a) shows a residual block in [6]) in the
residual neural network. However, when ASPP module is
used, the number of parameters will increase linearly with
the number of dilation rates. To control the numbers of
parameters in the neural network and reuse the pre-trained
model, we propose a novel structure which is shown in
Fig. 2(b). Three convolution layers 1× 1, 3× 3, 1× 1 are
stacked. The 1× 1 convolution layers are responsible for
adjusting the dimensions, while 3× 3 convolution is used
to learn nonlinear features. We split the 3× 3 convolution
layer into k branches equally along the channel axis. In
each branch, there is a special dilation rate to extract spe-
cial features. The feature map size in each branch is equal
and we can directly fuse them by simple concatenation.
The total channel number of all branches is the same as
the original residual block, and no extra parameters are
needed. We can directly use the original pre-trained model
to initialize the networks. The implement of such structure



Figure 3. Illustration of activations of the top left kernels on the
feature map. The left image shows activations of kernels with one dilation
rate, and the right image shows the union of activations of kernels with
different dilation rates.

produces a group convolution(Fig. 2(c)) with four groups
if dilation rate becomes 1, which is called Group Dilation
Convolution.

There is another advantage of this structure. If one
dilation convolution has kernel size of k× k, and dilation
rate is r, the receptive field of which is equal to a normal
convolution with kernel size d = k + (k − 1) × (r − 1).
The connections to previous feature map of the dilated
convolution are much sparer than the normal convolution,
although they have the same receptive field in theory.
When we use dilated convolution to replace the stride op-
eration, it loses some detailed information in the process.
In our structure, different dilation rates are corresponding
to the different receptive fields, they connect activations
from different positions in the feature map, and several
activations which don’t be connected in convolution with
a special dilation rate are connected in our module. For
example, supposing that we operate dilated convolution
on a 10 × 10 feature map. If the original dilation rate of
all channels is 2, activations with the first kernel in each
channel is shown as the left image of Fig. 3. The 1 × 1
convolution also obtains information from 9 activations.
When dilatation rates of different channels are changed,
such as 2,3,4, the union activations of the corresponding
first kernel in each channel are shown in the right image
of Fig. 3. The 1 × 1 convolution can obtain information
from more activations(22 activations), which means that
the proposed method is ability to achieve more useful
information.

B. Top-to-down pathway network

Enlarging the receptive field still has a limitation of
predicting small objects to some extent, therefore, we
explore multi-scale features for high-resolution prediction.
Section 2.1 mainly focus on collecting more global context
information to improve the prediction performance. In this
section, we hope also to obtain more local information
when the receptive field is expanded. Our design illustrated
in Fig. 4 is a independent structure to the baseline network.
In other words, it could be embedded in any base bone
network.

The main structure (which is shown in the left column
of Fig. 4) can be divided into 5 stages according to a
original residual network. Only the first three stages need
a down-sample operation and reduce the resolution of
feature maps (conv1, res2a, res3a). The network increases
the dilatation rate by 2 in stage-4 and stage-5 to fit the
original receptive field in residual network. So the dilation
rates in stage-4 and stage-5 are 2 and 4 respectively.
We choose the last convolution layer in each stage to
represent features of different scales. The structure of the
top-to-down pathway network is described as follows. Step
1, from one stage, the receptive field is expanded and
parameters are adjusted by the stack convolution model.
Step 2, an adaptive convolution is applied to fit the feature
map size of the previous stage. If the feature maps in
two stages are different, bilinear interpolation is used to
upsampling the feature map to fit the previous feature map
size. Step 3, features from the two stages are fused by
element adding operation in each location. Step 4, the
previous three steps are repeated to obtain a refined feature
map gradually. Step 5, a chain convolution module is used
to matain learning features and to learn nonlinear features.
The whole process can be trained end-to-end and step by
step. In each stage, we add an extra convolution layer to
generate prediction map and apply an extra supervisory
loss to help training. The loss weight of different stages
is set individual.

We also employ the multi-stages method to predict each
stage result after a stacked convolution module with equal
loss weights and then combine the results of different
stages directly. Unfortunately, the result is not satisfied, the
accuracy of each stage from top to down becomes worse
and worse, The best result in the multi-stages method is
worse than the method that only predicting result of the top
stage. We confirm that information from different stages
contains diverse contents. Some of them are conflicting
and some of them are complementary.

Thus we choose to use the cascade method to add
more useful information. Features of the top stage contain
the most powerful information about the object category,
based on which we add more localization information
which is contained in previous stages to recognize the
object boundary better. Stacked convolution and chain
convolution modules give us another chances to achieve
context information of larger region and aggregate multi-
scale features.

Stacked Dilated Convolution (SDC). SDC is a single
extension of the residual block in [20], but we removed
the batch normalization layer. We choose to use two
stacked convolutions with a 3× 3 kernel because dilation
convolution need to be applied when the kernel size is
larger than 1. We use different dilation rates in each
convolution to cover multi-scale features and the channel
number of each stage is the same as the channel number of
convolutions to the corresponding stage. This idea is the
same as the ASPP module [6], but we do not use ASPP
module directly. When using the SDC module, we can
obtain information of each dilated convolution, and the



Figure 4. Illustration of our proposed network, which fuse features from top-to-down to obtain a high resolution prediction.

information when combining these dilated convolutions
is also obtained. Compared with ASPP module which
uses parallel dilated convolutions, we can obtain more
information with similar structure. Experiments in Section
3 also prove it.

Chain Dilated Convolution (CDC). In the last part of
our framework, we hope to matain the useful information
we have learned and continue to learn new information
when considering multi-scale information. This module is
inspired by the success of skip connection. Skip connec-
tion is the core concept of the residual network which
combines lower layer to higher layer directly and passes
the gradient directly to earlier layer in the backward pro-
cess. So the module passes original information through
all processes when keep adding newly learned information
by element adding. The different scale sizes contain not
only the original size of convolution, but also the combi-
nation areas of two or three or more convolutions. This is
another advantage of this module, which can be extended
by convolution of any numbers. If we use k convolutions
to construct the module, we call it the k-chains module. In
Fig. 4, it shows a module with 4-chains. Each convolution
in this part has the same channel. It will learn more
nonlinear features from fusion feature map and generate
the final prediction.

III. EXPERIMENT

We verify our method on the PASCAL VOC 2012
dataset [21] to show its effectiveness. We implement our
framework using the public available Caffe Library [22]
and build it based on the public available implementations
of DeepLab [14] and DeepLab-v2 [6]. We also attempt to
optimize the runtime memory according to the implement
of GBDNet [23] and make some other simple tricks, which
is beneficial to build deeper networks and train networks
with larger batch size.

A. PASCAL VOC Dataset
The PASCAL VOC2012 segmentation benchmark con-

tains 1464 training images, 1449 validation images, and

1456 test images. Using the extra annotations provided by
[24], the training set is augmented to have 10582 images.
The dataset has 20 object categories and 1 background
category with pixel-level annotation.

B. Baseline Model

We use the DeepLab method as our baseline model by
replacing VGG network [25] to the ResNet-101 network
[20]. Specifically, the network has a down-sampling rate
of 8, and dilation convolution with the rates of 2 and
4 are applied to res4b and res5b blocks. At the top of
the network, there is a convolution layer with kernel
size is 3, dilation rate 12 and the total channels of this
layer equal to the number of dataset categories. The top
convolution is used to generate final prediction map with
a stride of 8 compared to the original image. Training
labels are down-sampled by a factor of 8 to supervise the
loss of each image. We apply the cross-entropy error at
each pixel over the categories and then all pixel locations
of the output map will be accumulated. We optimize
this objective function using standard Stochastic Gradient
Descent (SGD) in the training phase.

We train the network with image patch size 321× 321
(randomly cropped from the original image), and random-
ly scale image of factors between 0.5 and 1.5 to augment
the training data. The initial learning rate is set to 1e-3,
and a poly learning rate with power=0.9 is applied (as in
[6]). Weight decay and momentum are set to 0.0005 and
0.9 respectively. Finally, it achieves mean IOU of 71.72%
on the validation set, which is similar to the paper [6].

C. GDC

In this section, we focus on verifying the effectiveness
of group dilation convolution (GDC) structure. The only
thing we change is the dilation rates of 3x3-kernel convo-
lution in res5 layers. To be more specific, we split each
convolution of 3x3 into 4 groups along the channel with
different dilation rates. As pointed out before, this strategy
could increase the effective receptive field and is more



Table I
EXPERIMENTS ABOUT DILATION RATES IN GDC MODULE

Model DilationRates Mean IoU Pixel Acc.
Baseline [4,4,4,4] 71.72 93.55
GDC-small [3,4,4,5] 72.55 93.80
GDC-middle [3,4,5,7] 73.14 93.93
GDC-large [3,5,9,17] 73.74 94.02

Figure 5. Visualization results on PASCAL VOC 2012 validation
dataset.

Table II
EXPERIMENTS ABOUT TOP-TO-DOWN PATHWAY NETWORK

Model Mean IoU Pixel Acc.
Baseline 73.74 94.02
Res4 75.86 94.53
Res2 76.46 94.69

effective than the original design, and original convolution
in res5b could also be considered as four groups with the
same dilation rates of 4 respectively.

As illustrated in Tab I, we evaluate the dilation rates
with different values in res5 layers. It is clear that all of
them could improve the segmentation result. We experi-
ment with three kinds of dilation rates. the small one is
the nearest to the original rates, and when we continue
to enlarge the distance of the original dilation rates, the
accuracy is increased.

D. Top-to-down pathway network

In this section, we use the GDC-large model as a start
point to explore the effective of top-to-down pathway
network. We train the network step by step, and in each
step, we train a sub-network based on the previous step
model. You also can train the whole network end-to-end,
but there are a lot of parameters which will be initialized
randomly. We find that we will obtain better network if
we have a nice pre-trained model, and the process tells us
features in each layer benefit to the semantic segmentation
task. In each sub-network, we both have SDC and CDC
module, the only difference is the layers we fusion. Results
are shown in Tab II, Res-N means that we merge features
from the top stage to the stage-N to predict the result.

Table III
ABLATION STUDIES ABOUT SDC AND CDC MODULES

Model Dilation Rates Mean IoU Pixel Acc.
Baseline [12] 71.72 93.55
ASPP [6,12,18,24] 72.93 93.89
SDC [6,12,18,24] 73.34 93.97
CDC [6,12,18,24] 73.04 93.90

To evaluate the efficiency of stacked dilated convolution
(SDC) and chain dilated convolution module (CDC), we
embed our proposed module in the ASPP module in
DeepLab-v2 and compared the results with the original
ASPP module. We apply two stacked dilation models
with dilation rates of 6,12,18,24, which will have similar
parameters with ASPP module. The same as chained
dilation convolution module, we use the 4-chained module
with the same dilation rates. The comparison results are
shown in Tab III. SDC module shows better result than
other two modules, and SDC and CDC module both have
a better result than ASPP module.

IV. CONCLUSION

We propose simple yet effective convolutional oper-
ations for improving semantic segmentation systems. A
group dilated convolution module and a top-to-down
pathway network are designed to effectively enlarge the
receptive field and generate a refined prediction. This idea
can also be extended to improve other models.
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